چکیده
پایگاه های داده ی دنیای واقعی امروزی معمولا شامل میلیون ها مورد با هزاران حوزه می شوند. به عنوان یک نتیجه، روش های شناسایی بخش جدای سنتی توزیع بنیان دارای توانایی های محدود شده ی بسیاری هستند و رویکردهای جدید همسایه های نزدیکترین K بنیان، محبوب تر شده اند. اما، مشکل با این روش های همسایه های نزدیکترین K بنیان این است که آنها بسیار به مقدار K حساس هستند(می توانند رتبه بندی متفاوتی برای بخش های مجزای برتر n داشته باشند)، از نظر محاسباتی برای مجموعه های داده بسیار پر هزینه هستند و در کل در اینکه آیا آنها برای مجموعه های ابعاد زیاد به خوبی کار می کنند یا نه شک وجو دارد. در این مقاله برای تا حدی دور زدن این مشکلات،یک فاکتور جدید بخش مجزای سراسری و یک فاکتور جدیدی بخش مجزای محلی و یک الگوریتم شناسایی بخش مجزای کارآمد بر مبنای این دو فاکتور مطرح کردیم که به راحتی پیاده سازی می شود و با راه حل های موجود می تواند عملکردهای رقابتی را بهبود ببخشد.آزمایشات انجام شده روی هر دو مجموعه های داده ی ترکیبی و واقعی، کارآمدی روش ما را نشان می دهند.