عنوان فارسی مقاله: |
رویکردی مبتنی بر دسته بندی فازی برای کشف و توصیف حادثه بزرگراه خودکار |
عنوان انگلیسی مقاله: |
Afuzzy clustering-based approach to automatic freeway incident detection and characterization |
چکیده مطالب
کشف (آشکار سازی) حادثه خودکار و توصیف مشخصات آن به فوریت در توسعه ی تکنولوژی های پیشرفته ی به کار رفته برای کاهش تجمع ترافیک غیر برگشت کننده در بزرگراه ها لازم است.این مقاله متد جدیدی را ارائه می نماید که بیشتر بر مبنای تئوری های دسته بندی فازی است که به طور خودکار حادثه ها ی بزرگراه را شناسایی می نماید.دستاورد ارائه شده قادر به تشخیص اشکال زمانی متغیر حالات ترافیکی ایجاد شده حادثه از حالات ترافیکی بدون حادثه می باشد و می تواند حادثه ها را با توجه به مراحل زمانی آغاز و پایان حادثه ,موقعیت حادثه ,اشکال تغییر فضایی و زمانی متغیرهای ترافیکی مربوط به حادثه در پاسخ به تاثیرات حادثه ها بر روی جریان های ترافیکی بزرگراه در زمان حقیقی توصیف نماید.تعداد و تراکم ترافیکی راه (مسیر) دو نوع مهم از داده های ورودی است که می تواند به طور آماده از اشکارساز پوینت(نقطه) جمع اوری شود.بر اساس روابط فضایی (سه بعدی ) و زمانی (موقتی) داده های ترافیکی خام جمع آوری شده ,چندین حالت متغیر زمانی تعریف می شود و سپس به طور کمی وکیفی ارزیابی می شوند تا متغیرهای تصمیم گیری به کار رفته برای توصیف مشخصات حادثه زمانی واقعی مشخص شود . با استفاده از متغیرهای تصمیم مشخص شده ,الگوریتم بر اساس دسته بندی فازی ارائه شده ,مکررا سه راه کار مهم را به کار می برد: 1) شناسایی شرایط جریان ترافیکی 2) شناخت بروز حادثه و 3) مشخصات حادثه .در این مطالعه ,داده هایی که برای ازمون های مدل (الگو) به کار رفته اند ,از تشبیه کننده ترافیکی CORSIM ایجاد شده اند . نتایج آزمون مقدماتی ما بیانگر این است که دستاورد ارائه شده امید بخش و محتمل است و انتظار می برود بتواند با هر تکنولوژی آشکار سازی حادثه زمان حقیقی که منتشر شده است تلفیق شود.به طور مهمی ,ممکن است این مطالعه به شدت برای کاربردهای تکنیک های دسته بندی فازی مفید باشد و تحقیقات مرتبط بیشتری را برانگیزاند.کلیه حقوق برای Elsevier Science B.V محفوظ است.