عنوان فارسی مقاله: |
بهینه سازی ازدحام ذره پیشرفته برای زمان بندی وظیفه در محیط های رایانش ابری |
عنوان انگلیسی مقاله: |
Enhanced Particle Swarm Optimization For Task Scheduling In Cloud Computing Environments |
چکیده
زمان بندی وظیفه از جمله مهم ترین نیازمندی در محیط رایانش ابری می باشد که نقش کلیدی در کارامدی کل امکانات رایانش ابری ایفاء می کند . زمان بندی وظیفه در رایانش ابری بدان معنی می باشد که بهترین منابع مناسب برای وظیفه ای اختصاص یابد که قرار است با بررسی پارامتر های مختلف نظیر زمان ، هزینه ، مقیاس پذیری ، گستره سازی ، قابلیت اطمینان ، دسترس پذیری ، بازده ، بهره برداری منبع و غیره اجراء گردد . قابلیت اطمینان و دسترس پذیری در الگوریتم پیشنهادی مورد توجه قرار می گیرد . بخش عمده الگوریتم های زمان بندی به دلیل پیچیدگی دستیابی با این پارامتر ها به قابلیت اطمینان و دسترس پذیری محیط رایانش ابری نمی پردازند . ما مدل ریاضی را با استفاده از بهینه سازی ازدحام ذره جهش متوازن سازی بار (LBMPSO) مبتنی بر برنامه زمانی و تخصیص برای رایانش ابری پیشنهاد می دهیم که قابلیت اطمینان ، زمان اجراء ، زمان انتقال ، محدوده سازی ، هزینه انتقال و متوازن سازی بار بین وظایف و ماشین مجازی را به حساب می آورد . LBMPSO می تواند در دستیابی به قابلیت اطمینان محیط رایانش ابری از طریق بررسی منابع در دسترس و زمان بندی مجدد وظیفه نقش ایفاء نماید که در تخصیص دادن موفق نمی باشد . LBMPSO رویکرد ما با PSO استاندارد ، الگوریتم تصادفی و الگوریتم LCFP مقایسه شده بود تا نشان دهد که LBMPSO می تواند در گستره سازی ، زمان اجراء ، زمان سفر و هزینه انتقال صرفه جویی نماید .