عنوان فارسی مقاله: | درختان تصمیم گیری برای جریان های داده کاوی مبتنی بر کرانMcDiarmid |
عنوان انگلیسی مقاله: |
Decision Trees for Mining Data Streams Based on the McDiarmid’s Bound |
چکیده
در جریان های داده کاوی محبوب ترین ابزار، الگوریتم درخت Hoeffding می باشد. از کران Hoeffding برای تعیین کوچکترین تعداد نمونه های مورد نیاز در یک گره که برای انتخاب ویژگی تقسیم استفاده می کند.در ادبیات کران Hoeffding مشابهی برای هر تابع ارزیابی (اندازه گیری اکتشافی)، به عنوان مثال، بدست آوری اطلاعات و یا شاخص Gini مورد استفاده قرار می گرفت. در این مقاله، نشان داده شده است که نابرابری Hoeffding برای حل مشکل اساسی مناسب نیست. ما دو قضیه را اثبات می کنیم که کران McDiarmid را برای هر دو اطلاعات مورد استفاده در الگوریتم3 ID، و شاخص Gini ، در طبقه بندی و الگوریتم درختان رگرسیون (CART) مورد استفاده قرار می دهد. نتایج مقاله تضمین می کند که یک سیستم یادگیری درخت تصمیم گیری، اعمال شده به جریان های داده ای و بر اساس کران McDiarmid ، دارای ویژگی است که در آن خروجی تقریبا یکسان با یادگیرنده معمولی است. نتایج مقاله تاثیر به سزایی بر روی وضعیت جریان های داده ای و روش های مختلف توسعه یافته تا کنون دارد و الگوریتم ها باید تجدید نظر گردند.