چکیده
شخصی سازی یک روند رو به رشد در پژوهش بازی وار سازی است، و چند تن از محققین پیشنهاد دادند که سیستم های بازی نمایی شده باید مشخصههای شخصی را در نظر بگیرند. به هر حال، ایجاد طراحیهای بازی انگاری شده خوب یک تلاش فشرده است چرا که این موارد و سیستمهای طراحی شده در تعامل با هر کاربر تنها به بار کاری اضافه می کنند. ما انتخاب محتوای شخصی سازی مبتنی بر الگوریتم یادگیری ماشین را برای بررسی بخشی از این مشکل پیشنهاد دادیم و یک فرآیند را برای ایجاد طراحیهای شخصی ارائه دادیم که خودکار سازی بخشی از اجرا را اجازه می دهد. فرآیند بر اساس چارچوب Deterding’s 2015 برای طراحیهای بازی نمایی شده، از دیدگاه اتمی مهارتهای ذاتی، با مراحل اضافی برای انتخاب استراتژی شخصی سازی و ایجاد الگوریتم است. سپس فرآیند را با اجرای بازی نمایی شخصی شده برای یک محیط یادگیری همکاری پشتیبانی شده تشریح می شود، ما از نوع کاربر گیمیفیکیشن برای شخصی سازی و اکتشافاتی برای طراحی موثر گیمیفیکیشن برای طراحی کلی استفاده می کند. نتایج فرآیند طراحی استفاده شده یک مجموعه قواعد اگاه از زمینه، گیمیفیکیشن شخصی سازی شده برای محیطهای همکاری است. در آخر، ما متدی را برای تفسیر مجموعه قواعد گیمیفیکیشن برای الگوریتم دسته بندی قابل خواندن توسط ماشین با استفاده از القاکننده قانون CN2 ارائه می دهیم.